تخمین جریان زیرسطحی دامنه‌های حوضه آبخیز با استفاده از مدل‌های ناش و SCS

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد استهبان، استهبان، ایران

چکیده

مقدمه: تخمین جریان زیرسطحی(SUF)  در بسیاری از حوضه­های آبریز با پوشش گیاهی مناسب و نفوذ پذیری خاک بالا حائز اهمیت است و نقش اساسی در تولید رواناب مستقیم حوضه دارد. مفهومSUF  در خاک در مقایسه با جریان سطحی هنوز پیچیده­تر است، لذا ارائه مدل­های پیش بینی SUF حوضه­ها با روش‌های ساده وکاربردی بسیار مورد توجه واقع می‌شود.
روش­: در این پژوهش از مدل‌های بارندگی رواناب سطحی SCS و Nash برای تخمین جریان زیرسطحی دامنه‌های حوضه آبریز استفاده گردید. از معادلات هیدروگراف واحد دو مدل مزبور که تابعی از زمان پیمایش زیرسطحی و مقدار نفوذ می‌باشد، معادلاتی برای محاسبه زمان پیمایش زیرسطحی واقعی دامنه‌ها جهت استفاده مدل‌ها ارائه شد.
یافته­ها: برای صحت سنجی از نتایج مدل آزمایشگاهی باران ساز با قابلیت اندازه گیری دبی جریان سطحی و زیرسطحی دامنه مورد استفاده قرارگرفت. متوسط خطای مدل SCS  نسبت به مدل آزمایشگاهی در تخمین پیک رواناب سطحی برابر 8/7 % و در تخمین جریان زیرسطحی 7/6% و متوسط خطای مدل Nash در تخمین پیک رواناب سطحی برابر21/11% و در تخمین جریان زیرسطحی 32/11% بوده است. تاثیر شیب و ضریب هدایت هیدرولیکی دامنه‌ها برروی هیدروگراف SUF توسط دو مدل نیز مورد ارزیابی قرارگرفت.
نتیجه­گیری: مدل‌های بارندگی-رواناب سطحی نیز توانایی تخمین جریان زیرسطحی حوضه‌های آبریز را دارا هستند و تفاوت اساسی در مفهوم زمان پیمایش سطحی و زیرسطحی، بارش مازاد و شدت تغذیه به آبخوان است. مدل‌های سطحی براساس میزان بارش مازاد و زمان پیمایش سطحی به تخمین رواناب سطحی می‌پردازند، لذا از این قابلیت می‌توان برای تخمین جریان زیرسطحی بر اساس میزان نفوذ و زمان پیمایش زیرسطحی استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of subsurface flow of hillslopes using of SCS and Nash models

نویسندگان [English]

  • Hossein Fariborzi
  • TOURAJ SABZEVARI
  • Reza Mohammad pour
Department of Civil Engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
چکیده [English]

Estimation of subsurface flow (SUF) is important in many catchments with good vegetation cover and high soil permeability and plays a major role in direct runoff. The concept of SUF in soil is still more complicated in comparison with surface flow, so providing predictive models for SUF basins with simple and practical methods are of interest to hydrologists. In this research, for the first time, surface rainfall-runoff models have been used to estimate the subsurface flow of the hillslopes. Two SCS and Nash models were used to estimate the subsurface of the catchments. In this paper, the unit hydrograph equations of the two models were considered as a function of the subsurface travel time and the amount of infiltration. Equations for calculating the actual SUF travel time were presented for use in models. To validate the results, results of rainfall simulator model were used to measure the surface and subsurface flow. The mean error in the surface runoff peak estimation was 7.8% and in the 6.7% subsurface runoff estimation by SCS model. In the meanwhile, the mean error in the peak runoff runoff estimation was 11.21% and in the subsurface runoff estimation was 11.32% in Nash method. The effect of slope and soil hydraulic conductivity on the SUF hydrograph were evaluated by two models.

کلیدواژه‌ها [English]

  • Subsurface flow
  • SCS
  • NASH
  • Catchment
  • Rainfall simulator

1.               S. K. Mishra  & Singh, V. P., Soil Conservation Service Curve Number (SCS-CN) Methodology, vol. 42. 2013.

2.               K. S. Rawat and S. K. Singh, “Estimation of Surface Runoff from Semi-arid Ungauged Agricultural Watershed Using SCS-CN Method and Earth Observation Data Sets,” Water Conservation Science and Engineering, vol. 1, no. 4, pp. 233–247, 2017, doi: 10.1007/s41101-017-0016-4.

3.               R. Viji, P. R. Prasanna, and R. Ilangovan, “Modified SCS-CN and Green-Ampt Methods in Surface Runoff Modelling for the Kundahpallam Watershed, Nilgiris, Western Ghats, India,” Aquatic Procedia, vol. 4, no. Icwrcoe, pp. 677–684, 2015, doi: 10.1016/j.aqpro.2015.02.087.

4.               H. T. Choi, J. Kim, and H. Lim, “Estimating the SCS runoff curve number in forest catchments of Korea,” EGU General Assembly Conference …, vol. 18, p. 7210, 2016, [Online]. Available: https://ui.adsabs.harvard.edu/abs/2016EGUGA..18.7210C/abstract.

5.               SCS, Hydrology. National Engineering Handbook, Supplement A, Section 4, Chapter 10. .

6.               S. Sahoo, B. Sahoo, and S. N. Panda, “Hillslope-storage Boussinesq model for simulating subsurface water storage dynamics in scantily-gauged catchments,” Advances in Water Resources, vol. 121, pp. 219–234, 2018, doi: 10.1016/j.advwatres.2018.08.016.

7.               H. Fariborzi, T. Sabzevari, S. Noroozpour, and R. Mohammadpour, “Prediction of the subsurface flow of hillslopes using a subsurface time-area model,” Hydrogeology Journal, vol. 27, no. 4, pp. 1401–1417, 2019, doi: 10.1007/s10040-018-1909-9.

8.               G. De Schepper, R. Therrien, J. C. Refsgaard, and A. L. Hansen, “Simulating coupled surface and subsurface water flow in a tile-drained agricultural catchment,” Journal of Hydrology, vol. 521, pp. 374–388, 2015, doi: 10.1016/j.jhydrol.2014.12.035.

9.               P. A. Troch, C. Paniconi, and E. E. Van Loon, “Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response,” Water Resources Research, vol. 39, no. 11. 2003, doi: 10.1029/2002WR001728.

10.            M. . Pikul, R. . Street, and I. Remson, “A Numerical Model Based on Coupled One-Dimensional Richards and Boussinesq Equations,” Water Resources Research, vol. 10, no. 2, 1974.

11.            E. T. Essig, C. Corradini, R. Morbidelli, and R. S. Govindaraju, “Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results,” Journal of Hydrology, vol. 374, no. 1–2, pp. 30–42, 2009, doi: 10.1016/j.jhydrol.2009.05.017.

12.            B. N. Malleswara Rao, “Geomorphological Instantaneous Unit Hydrograph (GIUH) for an Ungauged Watershed,” CVR Journal of Science & Technology, vol. 15, no. 1, pp. 17–21, 2018, doi: 10.32377/cvrjst1503.

13.            A. Adib, M. Salarijazi, M. Vaghefi, M. Mahmoodian Shooshtari, and A. M. Akhondali, “Comparison between GcIUH-Clark, GIUH-Nash, Clark-IUH, and Nash-IUH models,” Turkish Journal of Engineering and Environmental Sciences, vol. 34, no. 2, pp. 91–103, 2010, doi: 10.3906/muh-0908-1.

14.            B. Sahoo, C. Chatterjee, N. S. Raghuwanshi, R. Singh, and R. Kumar, “Flood Estimation by GIUH-Based Clark and Nash Models,” Journal of Hydrologic Engineering, vol. 11, no. 6, pp. 515–525, 2006, doi: 10.1061/(asce)1084-0699(2006)11:6(515).

15.            R. Kumar, C. Chatterjee, R. D. Singh, A. K. Lohani, and S. Kumar, “GIUH based clark and nash models for runoff estimation for an ungauged basin and their uncertainty analysis,” International Journal of River Basin Management, vol. 2, no. 4, pp. 281–290, 2004, doi: 10.1080/15715124.2004.9635238.

16.            T. Sabzevari, M. H. Fattahi, R. Mohammadpour, and S. Noroozpour, “Prediction of surface and subsurface flow in catchments using the GIUH,” Journal of Flood Risk Management, vol. 6, no. 2, pp. 135–145, 2013, doi: 10.1111/j.1753-318X.2012.01165.x.

17.    )      K. T. Lee and C. H. Chang, “Incorporating subsurface-flow mechanism into geomorphology-based IUH modeling,” Journal of Hydrology, vol. 311, no. 1–4. pp. 91–105, 2005, doi: 10.1016/j.jhydrol.2005.01.008.

18.            T. Sabzevari and S. Noroozpour, “Effects of hillslope geometry on surface and subsurface flows,” Hydrogeology Journal, vol. 22, no. 7, pp. 1593–1604, 2014, doi: 10.1007/s10040-014-1149-6.

19.            T. Sabzevari, A. Talebi, R. Ardakanian, and A. Shamsai, “A steady-state saturation model to determine the subsurface travel time (STT) in complex hillslopes,” Hydrology and Earth System Sciences, vol. 14, no. 6, pp. 891–900, 2010, doi: 10.5194/hess-14-891-2010.

20.            M. M. Kandelous and J. Šimůnek, “Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D,” Agricultural Water Management, vol. 97, no. 7, pp. 1070–1076, 2010, doi: 10.1016/j.agwat.2010.02.012.

21.            E. Moghbeli, F. Hasanpour, and H. Shirani, “Prediction of water movement in soil using HYDRUS-1D and SWAP models.”[In Persian]

22.    )      S. Besharat, J. Behmanesh, H. Rezaee, and R. Delir Hasannya, “Evaluation of Hydrus-2D for soil water infiltration by using laboratory measurements in the weighing lysimeter,” Journal of Soil and Water Conservation Research, vol. 5. pp. 297–306, 1393. [In Persian]

23.            S. Farazkhah saani and S. Besharat, “Investigating the trend of changes in water infiltration in soil by HYDRUS-2D and SEEP-W software and comparing their results, the second national conference on natural resources and environment protection,” 2009. [In Persian]

24.            M. Farasati and H. Shakeri, “Simulation of water infiltration in the soil using HYDRUS1D software and field data,” 2018, doi: 10.22069/jwsc.2018.13950.2871. [In Persian]

25.            J. . Nash, “The form of the instantaneous unit hydrograph,” International Association of Hydrological Sciences, vol. 45, pp. 114–121, 1957.

26.            S. . Singh, “TRANSMUTING SYNTHETIC UNIT HYDROGRAPHS INTO GAMMA DISTRIBUTION,” vol. 1, no. October, pp. 380–385, 2000.

27.            C. . Hann, B. J. Barfield, and J. C. Hayes, Design Hydrology And Sedimentology For Small Catchments. 1994.

28.            P. Keshtkaran, T. Sabzevari, and M. Karami Moghadam, “Runoff estimation of watersheds without statistics using NASH dimensionless artificial unit hydrograph model (Study design: Ajay and Kasilian Basin),” no. February 2009, 2014. [In Persian]

29.            J. J. McDonnell and K. Beven, “Debates - The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph,” Water Resources Research, vol. 50, no. 6, pp. 5342–5350, 2014, doi: 10.1002/2013WR015141.

30.            V. A. N. Genuchten, “A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils 1,” Soil Science Society of America Journal, vol. 44, pp. 892–898, 1980.

31.            R. Morbidelli, C. Saltalippi, A. Flammini, M. Cifrodelli, C. Corradini, and R. S. Govindaraju, “Infiltration on sloping surfaces: Laboratory experimental evidence and implications for infiltration modeling,” Journal of Hydrology, vol. 523, pp. 79–85, 2015, doi: 10.1016/j.jhydrol.2015.01.041.